ALLEN CELL EXPLORER
  • About
      Institute
      1. Our science: CellScapes
      2. Past foundational projects
      3. News feed
      4. About us
      5. Careers
  • Allen Cell Collection
      Order cells & plasmids
      1. Cell Catalog
      2. Disease Collection Cell Catalog
      3. Cell Catalog quickview
      4. Cell video shorts
      Lab methods
      1. Video protocols
      2. Written protocols
      3. Our methodology
      4. Support forum
      About our hiPS cells
      1. hiPS Cell Structure Overview
      2. Visual Guide to Human Cells
      3. Cell structure observations
      4. Why endogenous tagging?
      5. Differentiation into cardiomyocytes
      6. Genomics
      7. Download cell data: Images, genomics, & features
  • Data & Digital Tools
      General
      1. Tools & resources overview
      2. Download cell data (images, genomics, features)
      3. Code repositories & software
      Desktop tools
      1. Allen Cell & Structure Segmenter
      2. AGAVE 3D pathtrace image viewer
      Web tools
      1. BioFile Finder
      2. Cell Feature Explorer
      3. Integrated Mitotic Stem Cell
      4. └ Z-stack viewer
      5. └ 3D viewer
      Web tools (con't)
      1. Simularium viewer
      2. Timelapse Feature Explorer
      3. Visual Guide to Human Cells
      4. Vol-E (Web Volume Viewer)
      5. 3D Cell Viewer
  • Analysis & Modeling
      Allen Integrated Cell models
      1. Visual Guide to Human Cells
      2. Integrated Mitotic Stem Cell
      3. └ Z-stack viewer
      4. └ 3D viewer
      5. Allen Integrated Cell
      6. └ 3D Probabilistic Modeling
      7. └ Label-free Determination
      4D biology models
      1. Simularium viewer
      Methodologies
      1. Drug perturbation pilot study
      2. hiPS cells during mitosis
      3. Differentiation into cardiomyocytes
  • Publications
      Articles
      1. Publications
      2. Preprints
      Presentations
      1. Talks & posters
  • Education
      Educational resources
      1. All resources
      2. Teaching materials
      Online tools popular with teachers
      1. Visual Guide to Human Cells
      2. Integrated Mitotic Stem Cell
      3. 3D Cell Feature Explorer
      4. 3D Cell Viewer
      5. hiPS cell structure overview
  • Support
      Questions
      1. FAQs
      2. Forum
      Tutorials for digital tools
      1. Video tutorials
      2. Visual Guide tutorial
      3. AGAVE documentation
      Lab methods
      1. Video protocols
      2. Written protocols
      3. Our methodology
  • 🔍
      SEARCHBAR

Cell structure observations

Observations about microscopy videos for 16 of the cell lines available in our Cell Catalog & 3D Cell Viewer.

Microtubules visualized via α-tubulin in both green (GFP) & red (mTagRFP-T)

3/13/2017

 
Z-stack
High magification (mitosis)
​Low magnification (mitosis)
3D rotation
3D rotation
Figure. Movies of α-tubulin in microtubules. Top left: Z-stack of live hiPS cells expressing mEGFP-tagged α-tubulin imaged on a spinning-disk confocal microscope. Images start from the bottom of the cells and end at the top. Top center and right: Timelapse movies of a hiPSC colony expressing mEGFP-tagged α-tubulin imaged on a spinning disk confocal microscope. Center: images were collected in 3D every 4 minutes for 400 minutes. Images are maximum intensity projections; playback speed is 1200x real time. Top right: images were collected as a single slice near the top of the cell every 1 minute for 65 minutes; playback speed is 900x real time. Bottom row: 3D reconstructions of hiPS cells expressing mEGFP-tagged α-tubulin to visualize both the general organization of microtubules within the cell and the primary cilia at the top of cells.

Observations:
  • α-tubulin polymerizes with ß-tubulin into microtubules, which are a component of the cell’s cytoskeleton. They are important in a number of cellular processes including intracellular transport of organelles and chromosome separation during mitosis.
  • Most of the structures we observe are likely bundles of microtubules instead of individual microtubules. In dividing cells we can observe weak astral microtubules (originating from the spindle poles but not connected to chromosome kinetochores), which could include individual microtubules. Therefore, all brighter tubulin structures are likely bundles of microtubules.
  • In hiPS cells, microtubules localize throughout the cytoplasm. More microtubules are seen near the top of cells with fewer near the bottom; in general microtubules seem to be oriented along the apical-basal axis throughout the center planes of the cell. This suggests microtubule nucleation occurs near the top of cells; however, a clear microtubule organizing center is not consistently seen. In some cells microtubules do seem to radiate from a more central location, which may be cell cycle related.
  • During cell division, cells form bipolar spindles that are most often oriented in the same plane as the cells. However, we do frequently see spindles rotating in all 3 directions during division.
  • After division, sister cells remain connected by their cytoplasmic bridges for 1-2 hours. These bridges often localize to the tops of colonies where they span across multiple cells due the sister cells intercalating to non-adjacent positions within the colony. Tubulin-rich midbodies are present in these cytoplasmic bridges.
  • Bright spots near the top of cells seen in the z-stack represent primary cilia, which are seen in most cells; their absence may be cell cycle related.
  • See FAQs for reasoning behind on our choice of red-fluorescent protein tagging.

Comments are closed.

    About

    Observations and descriptions from the microscope

    Archives

    February 2019
    August 2018
    April 2018
    October 2017
    April 2017
    March 2017

    Categories

    All
    3-channel
    3D Rotation
    Actin
    Actinomyosin
    Actin Structures
    Adhesions
    Cardiomyocyte
    Cell Cell Contacts
    Cell-cell Contacts
    Cell Contacts
    Cell Division
    Cell Membrane
    Centrin
    Centrioles
    Chromatin
    Colony
    Connexin
    Connexin-43
    Desmoplakin
    Desmosomes
    DNA
    Endoplasmic Reticulum
    Endosome
    ER
    Fibrillarin
    FUS
    Gap Junctions
    Golgi Apparatus
    H2B
    Histone
    K-Ras
    Lamin
    Lamin B1
    LAMP1
    Lysosomes
    MEGFP
    Membrane
    Microtubule
    Mitochondria
    Mitosis
    MLC-2a
    MLC 2v
    MTagRFP-T
    Muscle
    Myosin
    Nuclear
    Nuclear Envelope
    Nuclear Pores
    Nucleolus
    Nucleophosmin
    Nucleoporin
    Nucleus
    Nup153
    Paraspeckles
    Paxillin
    Peroxisome
    Plasma Membrane
    PMP34
    Rab-5A
    Ras
    RNA-binding Protein
    Sarcomere
    Sarcomere M-line
    Sarcomere Thick Filaments
    Sarcoplasmic Reticulum
    Sec61
    SERCA2
    Sialyltransferase 1
    SMC 1A
    ß-actin
    ST6GAL1
    Stress Granules
    Tight Junctions
    Time Lapse
    Time Series
    Titin
    Tom20
    Troponin
    Tubulin
    ZO1
    Z Stack

    RSS Feed

The Institute

Home
Careers
Culture & Community
Archived Content

Legal

Terms of Use
Citation Policy
Privacy Policy
Cookie Settings

Help & contact

​FAQs
Help
​Send us a Message
​Sign up for our Newsletter
Allen Institute for Cell Science is a part of the Allen Institute. The mission of the Allen Institute is to understand the principles that govern life, and to advance health. Our creative and multi-dimensional teams focus on answering some of the biggest questions in bioscience. We accelerate foundational research, catalyze bold ideas, develop tools and models, and openly share our science to make a broad, transformational impact on the world.
Follow Us  
​Copyright © 2025 Allen Institute. All Rights Reserved.
  • About
      Institute
      1. Our science: CellScapes
      2. Past foundational projects
      3. News feed
      4. About us
      5. Careers
  • Allen Cell Collection
      Order cells & plasmids
      1. Cell Catalog
      2. Disease Collection Cell Catalog
      3. Cell Catalog quickview
      4. Cell video shorts
      Lab methods
      1. Video protocols
      2. Written protocols
      3. Our methodology
      4. Support forum
      About our hiPS cells
      1. hiPS Cell Structure Overview
      2. Visual Guide to Human Cells
      3. Cell structure observations
      4. Why endogenous tagging?
      5. Differentiation into cardiomyocytes
      6. Genomics
      7. Download cell data: Images, genomics, & features
  • Data & Digital Tools
      General
      1. Tools & resources overview
      2. Download cell data (images, genomics, features)
      3. Code repositories & software
      Desktop tools
      1. Allen Cell & Structure Segmenter
      2. AGAVE 3D pathtrace image viewer
      Web tools
      1. BioFile Finder
      2. Cell Feature Explorer
      3. Integrated Mitotic Stem Cell
      4. └ Z-stack viewer
      5. └ 3D viewer
      Web tools (con't)
      1. Simularium viewer
      2. Timelapse Feature Explorer
      3. Visual Guide to Human Cells
      4. Vol-E (Web Volume Viewer)
      5. 3D Cell Viewer
  • Analysis & Modeling
      Allen Integrated Cell models
      1. Visual Guide to Human Cells
      2. Integrated Mitotic Stem Cell
      3. └ Z-stack viewer
      4. └ 3D viewer
      5. Allen Integrated Cell
      6. └ 3D Probabilistic Modeling
      7. └ Label-free Determination
      4D biology models
      1. Simularium viewer
      Methodologies
      1. Drug perturbation pilot study
      2. hiPS cells during mitosis
      3. Differentiation into cardiomyocytes
  • Publications
      Articles
      1. Publications
      2. Preprints
      Presentations
      1. Talks & posters
  • Education
      Educational resources
      1. All resources
      2. Teaching materials
      Online tools popular with teachers
      1. Visual Guide to Human Cells
      2. Integrated Mitotic Stem Cell
      3. 3D Cell Feature Explorer
      4. 3D Cell Viewer
      5. hiPS cell structure overview
  • Support
      Questions
      1. FAQs
      2. Forum
      Tutorials for digital tools
      1. Video tutorials
      2. Visual Guide tutorial
      3. AGAVE documentation
      Lab methods
      1. Video protocols
      2. Written protocols
      3. Our methodology
  • 🔍
      SEARCHBAR